Перевод: с английского на все языки

со всех языков на английский

who invented television

  • 1 invent

    in'vent
    1) (to be the first person to make or use (eg a machine, method etc): Who invented the microscope?; When was printing invented?) inventar
    2) (to make up or think of (eg an excuse or story): I'll have to invent some excuse for not going with him.) inventarse
    - inventive
    - inventiveness
    - inventor

    invent vb inventar
    who invented television? ¿quién inventó la televisión?
    tr[ɪn'vent]
    1 inventar, inventarse
    who invented the telephone? ¿quién inventó el teléfono?
    invent [ɪn'vɛnt] vt
    : inventar
    v.
    discurrir v.
    fabricar v.
    forjar v.
    idear v.
    inventar v.
    zurcir v.
    ɪn'vent
    transitive verb inventar
    [ɪn'vent]
    VT inventar
    * * *
    [ɪn'vent]
    transitive verb inventar

    English-spanish dictionary > invent

  • 2 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 3 Fischer, E.

    [br]
    fl. 1930s Switzerland
    [br]
    Swiss engineer who invented the Eidophor large-screen television projector.
    [br]
    Fischer was a professor of engineering at the Swiss Federal Institute of Technology in the late 1930s. Interested in the emerging technology for television, he was of the opinion that the growth of television would take place through the development and use of large-screen cinema-type displays serving large audiences. He therefore carried out research into suitable techniques. Realizing the brightness limitations of projection systems based on the optical magnification of the image produced by a conventional cathode ray tube, he used the deflected electron-beam, not to excite a phosphor screen, but to deposit a variable charge on the surface of a film or oil. By means of a Schlieren slit system, the consequent deformations of the surface were used to spatially modulate the light from an electric arc or a discharge tube, giving a large, high-brightness image. Although the idea, first put forward in 1939, was not taken up for cinema television, the subsequent requirement of the US National Aeronautics and Space Administration in the 1960s for large colour displays in its Command and Control Centres led to the successful development of the idea by Gretag AG, a subsidiary of Ciba-Geigy: separate units were used for the red, green and blue images. In the 1990s, colour Eidophor projectors were used for large conference meetings and pop concerts.
    [br]
    Bibliography
    1946, "Views on the suitability of a cathode ray tube with a fluorescent screen for projection in cinemas", Bulletin of the Association of Swiss Electricians 39:468 (describes the concept of the Eidophor).
    Further Reading
    E.H.Baumann, 1953, "The Fischer large screen projection system", Journal of Society of Motion Picture and Television Engineers 60:344.
    A.Robertson, 1976, "Projection television. A review of current practice in large-screen projectors", Wireless World 47.
    KF

    Biographical history of technology > Fischer, E.

  • 4 Nipkow, Paul Gottlieb

    [br]
    b. 22 August 1860 Lauenburg, Pommern (now Lebork, Poland)
    d. 24 August 1940 Berlin, Germany
    [br]
    Polish electrical engineer who invented the Nipkow television scanning disc.
    [br]
    In 1884, while still a student engineer, Nipkow patented a mechanical television pick-up device using a disc with a spiral of twenty-four holes rotating at 600 rpm in front of a selenium cell. He also proposed a display on an identical synchronous disc in conjunction with a light-modulator based on the Faraday effect. Unfortunately it was not possible to realize a working system at the time because of the slow response of selenium cells and the lack of suitable electronic-sig-nal amplifiers; he was unable to pay the extension fees and so the patent lapsed. Others took up the idea, however, and in 1907 pictures were sent between London and Paris by wire. Subsequently, the principle was used by Baird, Ives, and Jenkins.
    For most of his working life after obtaining his doctorate, Nipkow was employed as an engineer by a company that made railway-signalling equipment, but his pioneering invention was finally recognized in 1934 when he was made Honorary President of the newly formed German Television Society.
    [br]
    Principal Honours and Distinctions
    President, German Television Society 1934.
    Bibliography
    1884, German patent no. 30,105 (Nipkow's pioneering method of television image-scanning).
    Further Reading
    R.W.Hubbell, 1946, 4,000 Years of Television, London: G.Harrap \& Co.
    KF

    Biographical history of technology > Nipkow, Paul Gottlieb

  • 5 Williams, Sir Frederic Calland

    [br]
    b. 26 June 1911 Stockport, Cheshire, England
    d. 11 August 1977 Prestbury, Cheshire, England
    [br]
    English electrical engineer who invented the Williams storage cathode ray tube, which was extensively used worldwide as a data memory in the first digital computers.
    [br]
    Following education at Stockport Grammar School, Williams entered Manchester University in 1929, gaining his BSc in 1932 and MSc in 1933. After a short time as a college apprentice with Metropolitan Vickers, he went to Magdalen College, Oxford, to study for a DPhil, which he was awarded in 1936. He returned to Manchester University that year as an assistant lecturer, gaining his DSc in 1939. Following the outbreak of the Second World War he worked for the Scientific Civil Service, initially at the Bawdsey Research Station and then at the Telecommunications Research Establishment at Malvern, Worcestershire. There he was involved in research on non-incandescent amplifiers and diode rectifiers and the development of the first practical radar system capable of identifying friendly aircraft. Later in the war, he devised an automatic radar system suitable for use by fighter aircraft.
    After the war he resumed his academic career at Manchester, becoming Professor of Electrical Engineering and Director of the University Electrotechnical Laboratory in 1946. In the same year he succeeded in developing a data-memory device based on the cathode ray tube, in which the information was stored and read by electron-beam scanning of a charge-retaining target. The Williams storage tube, as it became known, not only found obvious later use as a means of storing single-frame, still television images but proved to be a vital component of the pioneering Manchester University MkI digital computer. Because it enabled both data and program instructions to be stored in the computer, it was soon used worldwide in the development of the early stored-program computers.
    [br]
    Principal Honours and Distinctions
    Knighted 1976. OBE 1945. CBE 1961. FRS 1950. Hon. DSc Durham 1964, Sussex 1971, Wales 1971. First Royal Society of Arts Benjamin Franklin Medal 1957. City of Philadelphia John Scott Award 1960. Royal Society Hughes Medal 1963. Institution of Electrical Engineers Faraday Medal 1972. Institute of Electrical and Electronics Engineers Pioneer Award 1973.
    Bibliography
    Williams contributed papers to many scientific journals, including Proceedings of the Royal Society, Proceedings of the Cambridge Philosophical Society, Journal of the Institution of Electrical Engineers, Proceedings of the Institution of Mechanical Engineers, Wireless Engineer, Post Office Electrical Engineers' Journal. Note especially: 1948, with J.Kilburn, "Electronic digital computers", Nature 162:487; 1949, with J.Kilburn, "A storage system for use with binary digital computing machines", Proceedings of the Institution of Electrical Engineers 96:81; 1975, "Early computers at Manchester University", Radio \& Electronic Engineer 45:327. Williams also collaborated in the writing of vols 19 and 20 of the MIT Radiation
    Laboratory Series.
    Further Reading
    B.Randell, 1973, The Origins of Digital Computers, Berlin: Springer-Verlag. M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall. See also: Stibitz, George R.; Strachey, Christopher.
    KF

    Biographical history of technology > Williams, Sir Frederic Calland

  • 6 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

См. также в других словарях:

  • television — / teli vIZFn, teli vIZFn/ noun 1 (C) also television set formal a thing shaped like a box with a screen, on which you can watch programmes; TV: a 16 inch colour television 2 (U) a way of broadcasting pictures and sounds in the form of programmes… …   Longman dictionary of contemporary English

  • Television — For other uses, see Television (disambiguation). TV redirects here. For other uses, see TV (disambiguation) …   Wikipedia

  • History of television — The Television technology can be divided along two lines: those developments that depended upon both mechanical and electronic principles, and those dependent only on electronic principles. From the latter descended all modern televisions, but… …   Wikipedia

  • Television and film in New Jersey — There is a long history of television and film in New Jersey. Motion picture technology was invented by Thomas Edison, with early work done at his West Orange laboratory. Edison s Black Maria where the first motion picture to be copyrighted in… …   Wikipedia

  • Television and Radio — ▪ 1995 Introduction       Dominant trends in television and radio in 1994 included continuing globalization of services and programming and increased competition between cable and telephone companies. The industry s battle cry was expand or exit …   Universalium

  • Television and film of New Jersey — *Motion picture technology was invented in New Jersey, by Thomas Edison. The early work was done at his West Orange laboratory. His Black Maria was the first motion picture studio. *Filming first started in 1907 in and the first studio was… …   Wikipedia

  • List of atheists (film, radio, television and theatre) — Film, radio, television and theatre Allen* Mary Adams (1898 ndash;1984): English producer and administrator in the BBC, instrumental in setting up the BBC s television service. [ She was a socialist, a romantic communist, and could charm with her …   Wikipedia

  • Doctor Who — This article is about the television series. For other uses, see Doctor Who (disambiguation). Doctor Who Series 6 Doctor Who main title card Genre Science fiction …   Wikipedia

  • List of Doctor Who universe creatures and aliens — This is a list of fictional creatures and aliens from the universe of the long running BBC science fiction television series Doctor Who, including Torchwood, The Sarah Jane Adventures and K 9. It covers alien races and other fictional creatures,… …   Wikipedia

  • Robot (Doctor Who) — 075 – Robot Doctor Who serial The K1 Robot prepares to take Sarah captive Cast …   Wikipedia

  • List of Doctor Who monsters and aliens — This is a list of monsters and aliens from the long running BBC science fiction television series Doctor Who . The list includes some races which are not extraterrestrial, but are nonetheless non human. This list is meant to cover alien races and …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»